Approximation in trace norm by positive semidefinite matrices
نویسندگان
چکیده
منابع مشابه
Singular value inequalities for positive semidefinite matrices
In this note, we obtain some singular values inequalities for positive semidefinite matrices by using block matrix technique. Our results are similar to some inequalities shown by Bhatia and Kittaneh in [Linear Algebra Appl. 308 (2000) 203-211] and [Linear Algebra Appl. 428 (2008) 2177-2191].
متن کاملA Norm Compression Inequality for Block Partitioned Positive Semidefinite Matrices
where B and D are square blocks. We prove the following inequalities for the Schatten q-norm ||.||q , which are sharp when the blocks are of size at least 2× 2: ||A||q ≤ (2 q − 2)||C||q + ||B|| q q + ||D|| q q, 1 ≤ q ≤ 2, and ||A||q ≥ (2 q − 2)||C||q + ||B|| q q + ||D|| q q, 2 ≤ q. These bounds can be extended to symmetric partitionings into larger numbers of blocks, at the expense of no longer...
متن کاملsingular value inequalities for positive semidefinite matrices
in this note, we obtain some singular values inequalities for positive semidefinite matrices by using block matrix technique. our results are similar to some inequalities shown by bhatia and kittaneh in [linear algebra appl. 308 (2000) 203-211] and [linear algebra appl. 428 (2008) 2177-2191].
متن کاملSemidefinite Programming in the Space of Partial Positive Semidefinite Matrices
We build upon the work of Fukuda et al. [SIAM J. Optim., 11 (2001), pp. 647–674] and Nakata et al. [Math. Program., 95 (2003), pp. 303–327], in which the theory of partial positive semidefinite matrices was applied to the semidefinite programming (SDP) problem as a technique for exploiting sparsity in the data. In contrast to their work, which improved an existing algorithm based on a standard ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Linear Algebra and its Applications
سال: 1985
ISSN: 0024-3795
DOI: 10.1016/0024-3795(85)90230-7